Comprehensive Expression Profiling of Tumor Cell Lines Identifies Molecular Signatures of Melanoma Progression
نویسندگان
چکیده
BACKGROUND Gene expression profiling has revolutionized our ability to molecularly classify primary human tumors and significantly enhanced the development of novel tumor markers and therapies; however, progress in the diagnosis and treatment of melanoma over the past 3 decades has been limited, and there is currently no approved therapy that significantly extends lifespan in patients with advanced disease. Profiling studies of melanoma to date have been inconsistent due to the heterogeneous nature of this malignancy and the limited availability of informative tissue specimens from early stages of disease. METHODOLOGY/PRINCIPLE FINDINGS In order to gain an improved understanding of the molecular basis of melanoma progression, we have compared gene expression profiles from a series of melanoma cell lines representing discrete stages of malignant progression that recapitulate critical characteristics of the primary lesions from which they were derived. Here we describe the unsupervised hierarchical clustering of profiling data from melanoma cell lines and melanocytes. This clustering identifies two distinctive molecular subclasses of melanoma segregating aggressive metastatic tumor cell lines from less-aggressive primary tumor cell lines. Further analysis of expression signatures associated with melanoma progression using functional annotations categorized these transcripts into three classes of genes: 1) Upregulation of activators of cell cycle progression, DNA replication and repair (CDCA2, NCAPH, NCAPG, NCAPG2, PBK, NUSAP1, BIRC5, ESCO2, HELLS, MELK, GINS1, GINS4, RAD54L, TYMS, and DHFR), 2) Loss of genes associated with cellular adhesion and melanocyte differentiation (CDH3, CDH1, c-KIT, PAX3, CITED1/MSG-1, TYR, MELANA, MC1R, and OCA2), 3) Upregulation of genes associated with resistance to apoptosis (BIRC5/survivin). While these broad classes of transcripts have previously been implicated in the progression of melanoma and other malignancies, the specific genes identified within each class of transcripts are novel. In addition, the transcription factor NF-KB was specifically identified as being a potential "master regulator" of melanoma invasion since NF-KB binding sites were identified as consistent consensus sequences within promoters of progression-associated genes. CONCLUSIONS/SIGNIFICANCE We conclude that tumor cell lines are a valuable resource for the early identification of gene signatures associated with malignant progression in tumors with significant heterogeneity like melanoma. We further conclude that the development of novel data reduction algorithms for analysis of microarray studies is critical to allow for optimized mining of important, clinically-relevant datasets. It is expected that subsequent validation studies in primary human tissues using such an approach will lead to more rapid translation of such studies to the identification of novel tumor biomarkers and therapeutic targets.
منابع مشابه
One Signal, Multiple Pathways: Diversity Comes from the Receptor
Background. Gene expression profiling has revolutionized our ability to molecularly classify primary human tumors and significantly enhanced the development of novel tumor markers and therapies; however, progress in the diagnosis and treatment of melanoma over the past 3 decades has been limited, and there is currently no approved therapy that significantly extends lifespan in patients with adv...
متن کاملSUSCEPTIBILITY OF HUMAN WM MELANOMA CELL LINES TO NK AND LAK CYTOTOXICITY AND THEIR RELEVANCE TO THE LEVEL OF MHC CLASS I AND ICAM-l ANTIGEN EXPRESSION
The effect of natural killer (NK) cells and lymphokine activated killer ( LAK) cells was studied on a group of human melanoma cell lines. Peripheral blood from healthy volunteers was utilized as a fresh source of natural killer cells and rhI L-2 for producing LAK cells. The cytotoxicity of effector cells was quantified using a 4 hour SI determining the density of antigen expression on tumor...
متن کاملExploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach
Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...
متن کاملCYTOKINE AND GROWTH FACTOR MODULATION OF CELL CYCLE EVENTS IN HUMAN MELANOMA CELL LINES
Cytokines influence cell cycle events, which in some but not all instances can be associated with melanoma progression. Analysis of the G0/G 1 and S phase fractions of the cell cycle was used to assay the proliferative or inhibitory activity of cytokines against ten human melanoma cell lines, including pairs of cell lines derived from primary and metastatic tissue of individual patients. Cy...
متن کاملIn vivo switching of human melanoma cells between proliferative and invasive states.
Metastatic melanoma represents a complex and heterogeneous disease for which there are no therapies to improve patient survival. Recent expression profiling of melanoma cell lines identified two transcription signatures, respectively, corresponding with proliferative and invasive cellular phenotypes. A model derived from these findings predicts that in vivo melanoma cells may switch between the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 2 شماره
صفحات -
تاریخ انتشار 2007